Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
Add more filters










Publication year range
1.
BMC Genomics ; 25(1): 439, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698307

ABSTRACT

BACKGROUND: Chickpea is prone to many abiotic stresses such as heat, drought, salinity, etc. which cause severe loss in yield. Tolerance towards these stresses is quantitative in nature and many studies have been done to map the loci influencing these traits in different populations using different markers. This study is an attempt to meta-analyse those reported loci projected over a high-density consensus map to provide a more accurate information on the regions influencing heat, drought, cold and salinity tolerance in chickpea. RESULTS: A meta-analysis of QTL reported to be responsible for tolerance to drought, heat, cold and salinity stress tolerance in chickpeas was done. A total of 1512 QTL responsible for the concerned abiotic stress tolerance were collected from literature, of which 1189 were projected on a chickpea consensus genetic map. The QTL meta-analysis predicted 59 MQTL spread over all 8 chromosomes, responsible for these 4 kinds of abiotic stress tolerance in chickpea. The physical locations of 23 MQTL were validated by various marker-trait associations and genome-wide association studies. Out of these reported MQTL, CaMQAST1.1, CaMQAST4.1, CaMQAST4.4, CaMQAST7.8, and CaMQAST8.2 were suggested to be useful for different breeding approaches as they were responsible for high per cent variance explained (PVE), had small intervals and encompassed a large number of originally reported QTL. Many putative candidate genes that might be responsible for directly or indirectly conferring abiotic stress tolerance were identified in the region covered by 4 major MQTL- CaMQAST1.1, CaMQAST4.4, CaMQAST7.7, and CaMQAST6.4, such as heat shock proteins, auxin and gibberellin response factors, etc. CONCLUSION: The results of this study should be useful for the breeders and researchers to develop new chickpea varieties which are tolerant to drought, heat, cold, and salinity stresses.


Subject(s)
Cicer , Quantitative Trait Loci , Stress, Physiological , Cicer/genetics , Stress, Physiological/genetics , Chromosome Mapping , Droughts , Genome-Wide Association Study
2.
ACS Nano ; 18(18): 11813-11827, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38657165

ABSTRACT

Nanoenabled strategies have recently attracted attention as a sustainable platform for agricultural applications. Here, we present a mechanistic understanding of nanobiointeraction through an orthogonal investigation. Pristine (nS) and stearic acid surface-modified (cS) sulfur nanoparticles (NPs) as a multifunctional nanofertilizer were applied to tomato (Solanum lycopersicumL.) through soil. Both nS and cS increased root mass by 73% and 81% and increased shoot weight by 35% and 50%, respectively, compared to the untreated controls. Bulk sulfur (bS) and ionic sulfate (iS) had no such stimulatory effect. Notably, surface modification of S NPs had a positive impact, as cS yielded 38% and 51% greater shoot weight compared to nS at 100 and 200 mg/L, respectively. Moreover, nS and cS significantly improved leaf photosynthesis by promoting the linear electron flow, quantum yield of photosystem II, and relative chlorophyll content. The time-dependent gene expression related to two S bioassimilation and signaling pathways showed a specific role of NP surface physicochemical properties. Additionally, a time-dependent Global Test and machine learning strategy applied to understand the NP surface modification domain metabolomic profiling showed that cS increased the contents of IA, tryptophan, tomatidine, and scopoletin in plant leaves compared to the other treatments. These findings provide critical mechanistic insights into the use of nanoscale sulfur as a multifunctional soil amendment to enhance plant performance as part of nanoenabled agriculture.


Subject(s)
Nanoparticles , Solanum lycopersicum , Sulfur , Solanum lycopersicum/metabolism , Solanum lycopersicum/drug effects , Sulfur/metabolism , Sulfur/chemistry , Nanoparticles/chemistry , Nanoparticles/metabolism , Photosynthesis , Surface Properties , Time Factors , Fertilizers , Stearic Acids/metabolism , Stearic Acids/chemistry , Plant Leaves/metabolism
3.
Int J Phytoremediation ; : 1-11, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38597454

ABSTRACT

In the present study, experiments were conducted to assess the influence of nanoscale sulfur in the microbial community structure of metallophytes in Hg-contaminated rhizosphere soil for planting rapeseed. The results showed that the richness and diversity of the rhizobacteria community decreased significantly under Hg stress, but increased slightly after SNPs addition, with a reduction in the loss of Hg-sensitive microorganisms. Moreover, all changes in the relative abundances of the top ten phyla influenced by Hg treatment were reverted when subjected to Hg + SNPs treatment, except for Myxococcota and Bacteroidota. Similarly, the top five genera, whose relative abundance decreased the most under Hg alone compared to CK, increased by 19.05%-54.66% under Hg + SNPs treatment compared with Hg alone. Furthermore, the relative abundance of Sphingomonas, as one of the dominant genera for both CK and Hg + SNPs treatment, was actively correlated with plant growth. Rhizobacteria, like Pedobacter and Massilia, were significantly decreased under Hg + SNPs and were positively linked to Hg accumulation in plants. This study suggested that SNPs could create a healthier soil microecological environment by reversing the effect of Hg on the relative abundance of microorganisms, thereby assisting microorganisms to remediate heavy metal-contaminated soil and reduce the stress of heavy metals on plants.


In this manuscript, we first comprehensively investigated the changes in the rhizosphere microbial community structure of metallophytes in Hg-contaminated soil with SNPs addition, as well as the relationship between soil microbiology and plant resistance to Hg stress. Our results demonstrated that SNPs exhibit a significant advantage in improving rhizosphere microecology by increasing the abundance of beneficial rhizobacteria, thereby alleviating heavy metal toxicity, and promoting plant growth. This study is the first study describing the response of soil microorganisms coexposed to heavy metals and SNPs, providing valuable information for the potential use of SNPs to assist phytoremediation of toxic metal pollution and its impact on soil microbial communities.

4.
Chem Sci ; 15(13): 4709-4722, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38550705

ABSTRACT

The global population is growing rapidly, which poses a significant challenge to food security. Innovation in agricultural technologies is necessary to achieve sustainable development in agriculture and combat food insecurity. Nanotechnology has emerged as a promising tool in agriculture; compared to conventional agricultural chemicals, demonstrated benefits include increased efficiency of delivery and utilization of both nutrients and pesticides, as well as nanoscale-specific stimulation of stress tolerance pathways. Among the many studied nanomaterials, nano-sulfur has demonstrated superior effects at enhancing plant resilience to pathogens and abiotic stresses, as well as improving plant growth and nutritional quality of edible tissues. A number of published studies have investigated the physiological effects (growth promotion, disease resistance) of single or several sulfur and sulfide compounds on crop species. However, there is no systematic analysis of this literature, including the effects and specific mechanisms of various sulfur forms in agricultural applications. In this review, we will discuss the effects of sulfur (including nano-sulfur) on crop species, the underlying mechanisms of action for their transport and transformation in the soil-plant system, and evaluate their suitability in sustainable agricultural development. Additionally, we discuss the current challenges and knowledge gaps for nanoscale sulfur use in agriculture, and describe future research directions to advance our understanding of the sustainable use of this material at the scale of individual fields.

5.
Plant Physiol Biochem ; 208: 108470, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38422576

ABSTRACT

Camelinasativa has considerable promise as a dedicated industrial oilseed crop. Its oil-based blends have been tested and approved as liquid transportation fuels. Previously, we utilized metabolomic and transcriptomic profiling approaches and identified metabolic bottlenecks that control oil production and accumulation in seeds. Accordingly, we selected candidate genes for the metabolic engineering of Camelina. Here we targeted the overexpression of Camelina PDCT gene, which encodes the phosphatidylcholine: diacylglycerol cholinephosphotransferase enzyme. PDCT is proposed as a gatekeeper responsible for the interconversions of diacylglycerol (DAG) and phosphatidylcholine (PC) pools and has the potential to increase the levels of TAG in seeds. To confirm whether increased CsPDCT activity in developing Camelina seeds would enhance carbon flux toward increased levels of TAG and alter oil composition, we overexpressed the CsPDCT gene under the control of the seed-specific phaseolin promoter. Camelina transgenics exhibited significant increases in seed yield (19-56%), seed oil content (9-13%), oil yields per plant (32-76%), and altered polyunsaturated fatty acid (PUFA) content compared to their parental wild-type (WT) plants. Results from [14C] acetate labeling of Camelina developing embryos expressing CsPDCT in culture indicated increased rates of radiolabeled fatty acid incorporation into glycerolipids (up to 64%, 59%, and 43% higher in TAG, DAG, and PC, respectively), relative to WT embryos. We conclude that overexpression of PDCT appears to be a positive strategy to achieve a synergistic effect on the flux through the TAG synthesis pathway, thereby further increasing oil yields in Camelina.


Subject(s)
Brassicaceae , Phosphatidylcholines , Phosphatidylcholines/metabolism , Triglycerides/metabolism , Brassicaceae/genetics , Brassicaceae/metabolism , Fatty Acids/metabolism , Seeds/genetics , Seeds/metabolism , Carbon Cycle , Plant Oils/metabolism , Plants, Genetically Modified/metabolism
6.
Plant Cell Rep ; 43(3): 64, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38340214

ABSTRACT

KEY MESSAGE: This study demonstrates the crucial role of OsPIP2;6 for translocation of arsenic from roots to shoots, which can decrease arsenic accumulation in rice for improved food safety. Arsenic (As) contamination in food and water, primarily through rice consumption, poses a significant health risk due to its natural tendency to accumulate inorganic arsenic (iAs). Understanding As transport mechanisms is vital for producing As-free rice. This study investigates the role of rice plasma membrane intrinsic protein, OsPIP2;6, for AsIII tolerance and accumulation. RNAi-mediated suppression of OsPIP2;6 expression resulted in a substantial (35-65%) reduction in As accumulation in rice shoots, while root arsenic levels remained largely unaffected. Conversely, OsPIP2;6 overexpression led to 15-76% higher arsenic accumulation in shoots, with no significant change in root As content. In mature plants, RNAi suppression caused (19-26%) decrease in shoot As, with flag leaves and grains showing a 16% reduction. OsPIP2;6 expression was detected in both roots and shoots, with higher transcript levels in shoots. Localization studies revealed its presence in vascular tissues of both roots and shoots. Overall, our findings highlight OsPIP2;6's role in root-to-shoot As translocation, attributed to its specific localization in the vascular tissue of roots and leaves. This knowledge can facilitate the development of breeding programs to mitigate As accumulation in rice and other food crops for improved food safety and increasing productivity on As-contaminated soils.


Subject(s)
Arsenic , Oryza , Radioisotopes , Oryza/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Plant Breeding , Membrane Proteins/metabolism , Cell Membrane/metabolism
7.
Plant Genome ; 17(1): e20307, 2024 Mar.
Article in English | MEDLINE | ID: mdl-36751876

ABSTRACT

The grain-filling stage in Triticum aestivum (wheat) is highly vulnerable to increasing temperature as terminal heat stress diminishes grain quality and yield. To examine the mechanism of terminal heat tolerance, we performed the biochemical and gene expression analyses using two heat-tolerant (WH730 and WH1218) and two heat-sensitive (WH711 and WH157) wheat genotypes. We observed a significant increase in total soluble sugar (25%-47%), proline (7%-15%), and glycine betaine (GB) (22%-34%) contents in flag leaf, whereas a decrease in grain-filling duration, 1000-kernel weight (8%-25%), and grain yield per plant (11%-23%) was observed under the late-sown compared to the timely sown. The maximum content of osmolytes, including total soluble sugar, proline, and GB, was observed in heat-tolerant genotypes compared to heat-sensitive genotypes. The expression of 10 heat-responsive genes associated with heat shock proteins (sHsp-1, Hsp17, and HsfA4), flavonoid biosynthesis (F3'-1 and PAL), ß-glucan synthesis (CslF6 and CslH), and xyloglucan metabolism (XTH1, XTH2, and XTH5) was studied in flag leaf exposed to different heat treatments (34, 36, 38, and 40°C) at 15 days after anthesis by quantitative real-time polymerase chain reaction. A significant increase in the relative fold expression of these genes with increasing temperature indicated their involvement in providing heat-stress tolerance. The high differential expression of most of the genes in heat-tolerant genotype "WH730" followed by "WH1218" indicates the high adaptability of these genotypes to heat stress compared to heat-sensitive wheat genotypes. Based on the previous results, "WH730" performed better in terms of maximum osmolyte accumulation, grain yield, and gene expression under heat stress.


Subject(s)
Bread , Triticum , Triticum/genetics , Heat-Shock Response/genetics , Edible Grain/genetics , Proline/genetics , Gene Expression , Sugars
8.
Int J Phytoremediation ; 26(4): 524-534, 2024.
Article in English | MEDLINE | ID: mdl-37641540

ABSTRACT

Mercury (Hg) pollution has seriously threatened the crop productivity and food security. In the present research, experiments were conducted to assess the influence of nanoscale sulfur/sulfur nanoparticles and the corresponding bulk and ionic sulfur forms on the growth and Hg accumulation of oilseed rape seedlings grown on Hg-contaminated soil, as well as the transformation of soil Hg fractions. The results showed a significant reduction in fresh biomass for seedlings grown on 80-200 mg/kg Hg-polluted soil after 30 days. At 120 mg/kg Hg treatment, 100-300 mg/kg sulfur nanoparticles (SNPs) application counteracted Hg toxicity more effectively compared to the corresponding bulk sulfur particles (BSPs) and ionic sulfur (sulfate) treatments. The seedlings treated with 120 mg/kg Hg + 300 mg/kg SNPs gained 54.2 and 56.9% more shoot and root biomass, respectively, compared to those treated with Hg alone. Meanwhile, 300 mg/kg SNPs application decreased Hg accumulation by 18.9 and 76.5% in shoots and roots, respectively, relative to Hg alone treatment.SNPs treatment caused more Hg to be blocked in the soil and accumulating significantly less Hg in plants as compared to other S forms. The chemical fractions of Hg in the soil were subsequently investigated, and the solubility of Hg was significantly decreased by applying SNPs to the soil. Especially 200-300 mg/kg SNPs treatments caused the ratio of the soluble/exchangeable and the specifically absorbed fraction to be the lowest, accounting for 1.95-4.13% of the total Hg of soil. These findings suggest that adding SNPs to Hg-contaminated soils could be an effective measure for immobilizing soluble Hg and decreasing the Hg concentration in the edible parts of crops. The results of the current study hold promise for the practical application of SNPs to Hg-contaminated farmland for better yields and simultaneously increasing the food safety.


The novelty of this study is the selection of oilseed rape and nanoscale sulfur (NS) or sulfur nanoparticles (SNPs) as nontoxic nanomaterial to counteract the Hg toxicity and accumulation. Oilseed rape was selected due to its wide adaptability to various environmental conditions and the high-value oil for human consumption and biofuels production. These advantages make oilseed rape a highly valuable crop for various applications. NS was selected due to its reported ability to limit the uptake of heavy metals in oilseed rape, rice, and wheat along with other crops and subsequently restrict the toxicity of heavy metals in these plants and improve food safety. In this study, we evaluated the growth, Hg accumulation, and the resulting toxicity in oilseed rape grown on Hg-contaminated soil, with or without amendments with NS. The outcomes from this study provided evidence of the significant potential of NS in preventing Hg bioaccumulation and improving crop yields in oilseed rape. This provides opportunity to use NS as an ideal non-GMO approach to limit toxic metals in crops.


Subject(s)
Brassica napus , Mercury , Soil Pollutants , Seedlings/chemistry , Biodegradation, Environmental , Soil , Sulfur , Soil Pollutants/analysis , Cadmium
9.
Plant Sci ; 340: 111964, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38159611

ABSTRACT

Nanotechnology offers the potential to provide innovative solutions for sustainable crop production as plants are exposed to a combination of climate change factors (CO2, temperature, UV radiation, ozone), abiotic (heavy metals, salinity, drought), and biotic (virus, bacteria, fungi, nematode, and insects) stresses. The application of particular sizes, shapes, and concentration of nanomaterials (NMs) potentially mitigate the negative impacts in plants by modulation of photosynthetic rate, redox homeostasis, hormonal balance, and nutrient assimilation through upregulation of anti-stress metabolites, antioxidant defense pathways, and genes and genes network. The present review inculcates recent advances in uptake, translocation, and accumulation mechanisms of NMs in plants. The critical theme of this review provides detailed insights into different physiological, biochemical, molecular, and stress tolerance mechanism(s) of NMs action and their cross-talk with different phytohormones. The role of NMs as a double-edged sword for climate change factors, abiotic, and biotic stresses for nutrients uptake, hormones synthesis, cytotoxic, and genotoxic effects including chromosomal aberration, and micronuclei synthesis have been extensively studied. Importantly, this review aims to provide an in-depth understanding of the hormesis effect at low and toxicity at higher doses of NMs under different stressors to develop innovative approaches and design smart NMs for sustainable crop production.


Subject(s)
Nanostructures , Plant Growth Regulators , Plant Growth Regulators/metabolism , Plants/metabolism , Stress, Physiological , Temperature
10.
Plant Cell Rep ; 43(1): 14, 2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38135793

ABSTRACT

KEY MESSAGE: Overexpressing CsGGCT2;1 in Camelina enhances arsenic tolerance, reducing arsenic accumulation by 40-60%. Genetically modified Camelina can potentially thrive on contaminated lands and help safeguard food quality and sustainable food and biofuel production. Environmental arsenic contamination is a serious global issue that adversely affects human health and diminishes the quality of harvested produce. Glutathione (GSH) is known to bind and detoxify arsenic and other toxic metals. A steady level of GSH is maintained within cells via the γ-glutamyl cycle. The γ-glutamyl cyclotransferases (GGCTs) have previously been shown to be involved in GSH degradation and increased tolerance to toxic metals in plants. In this study, we characterized the GGCT2;1 homolog from Camelina sativa for its role in arsenic tolerance and accumulation. Overexpression of CsGGCT2;1 in Camelina under CaMV35S constitutive promoter resulted in strong tolerance to arsenite (AsIII). The overexpression (OE) lines had 2.6-3.5-fold higher shoots and sevenfold to tenfold enhanced root biomass on media supplemented with AsIII, relative to wild-type plants. The CsGGCT2;1 OE lines accumulated 40-60% less arsenic in root and shoot tissues compared to wild-type plants. Further, the OE lines had ~ twofold higher chlorophyll content and 35% lesser levels of malondialdehyde (MDA), an indicator of membrane damage via lipid peroxidation. There was a slight but non-significant increase in 5-oxoproline (5-OP), a product of GSH degradation, in OE lines. However, the transcript levels of Oxoprolinase 1 (OXP1) were upregulated, indicating the accelerated conversion of 5-OP to glutamate, which is further utilized for the resynthesis of GSH to maintain GSH homeostasis. Overall, this research suggests that genetically modified Camelina may have the potential for cultivation on contaminated marginal lands to reduce As accumulation; thereby could help in addressing food safety issues as well as future food and biofuel needs.


Subject(s)
Arsenic , Brassicaceae , Humans , Arsenic/toxicity , Biofuels , Brassicaceae/genetics , Brassicaceae/metabolism , Glutathione/metabolism , Homeostasis
11.
Plant Physiol Biochem ; 203: 108004, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37714027

ABSTRACT

Plant tissue culture is the primary, fundamental, and applied aspect of plant biology. It is an indispensable and valuable technique for investigating morphogenesis, embryogenesis, clonal propagation, crop improvements, generation of pathogen-free plants, gene transfer and expression, and the production of secondary metabolites. The extensive use of various nanoparticles (NPs) in fields such as cosmetics, energy, medicine, pharmaceuticals, electronics, agriculture, and biotechnology have demonstrated positive impacts in microbial decontamination, callus differentiation, organogenesis, somatic variations, biotransformation, cryopreservation, and enhanced synthesis of bioactive compounds. This review summarizes the current state of knowledge with regard to the use of nanoparticles in plant tissue culture, with a particular focus on the beneficial outcomes. The positive (beneficial) and negative (toxic) effects of engineered NPs in tissue culture medium, delivery of transgenes, NPs toxicity concerns, safety issues, and potential hazards arising from utilization of nanomaterials in agriculture through plant tissue culture are discussed in detail, along with the future prospects for these applications. In addition, the potential use of novel nanomaterials such as graphene, graphite, dendrimers, quantum dots, and carbon nanotubes as well as unique metal or metalloid NPs are proposed. Further, the potential mechanisms underlying NPs elicitation of tissue culture response in different applications are critically evaluated. The potential of these approaches in plant nanobiotechnology is only now becoming understood and it is clear that the role of these strategies in sustainably increasing crop production to combat global food security and safety in a changing climate will be significant.

12.
Environ Pollut ; 336: 122423, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37604392

ABSTRACT

Silver nanoparticles (AgNPs) are commonly used in many commercial products due to their antimicrobial properties, and their significant exposure in agricultural systems is anticipated. AgNPs accumulation in soil and subsequent uptake by plants can be harmful to plant growth and exposure to animals and humans through the food chain is a major concern. This study evaluated the potential protective role of nanosulfur (NS) and bulk sulfur (BS) at 200 and 400 mg/kg soil application in alleviating silver nanoparticle (AgNPs; 32 and 64 mg/kg) phytotoxicity to soybean [Glycine max (L) Merr.]. The treatments were added in the soil before soybean transplantation; growth, yield, nutrient, and silver accumulation were measured in the shoot, root, and seeds. Exposure to AgNPs significantly affected plant growth and yield, reducing nodule weight by 40%, fresh shoot weight by 66%, and seed yield by 68% when compared to controls. However, nanosulfur application in soil alleviated AgNPs toxicity, and importantly, this impact was nanoscale specific at the higher concentration because the benefits of corresponding bulk sulfur (BS) treatments were marginal. Specifically, nanosulfur at 400 mg/kg significantly increased seed yield (∼3-fold more than AgNP at 64 mg/kg) and shoot biomass (2.6-fold more than AgNP at 64 mg/kg) upon co-exposure with AgNPs, essentially alleviating AgNPs toxicity. Moreover, NS increased nodule mass by 3.5 times compared to AgNPs-treated plants, which was 170% greater than the Ag- and NS-free controls. Plants treated with NS with AgNPs co-exposure accumulated significantly less Ag in the shoots (∼80% reduction) and roots (∼95% reduction); no Ag contents were detected in seeds. These findings demonstrate the potential of sulfur, especially NS, as a sustainable soil amendment to reduce the accumulation and toxicity of AgNPs and as a valuable nano-enabled strategy to promote food safety and security.

13.
BMC Genomics ; 24(1): 259, 2023 May 12.
Article in English | MEDLINE | ID: mdl-37173660

ABSTRACT

BACKGROUND: Yellow or stripe rust, caused by the fungus Puccinia striiformis f. sp. tritici (Pst) is an important disease of wheat that threatens wheat production. Since developing resistant cultivars offers a viable solution for disease management, it is essential to understand the genetic basis of stripe rust resistance. In recent years, meta-QTL analysis of identified QTLs has gained popularity as a way to dissect the genetic architecture underpinning quantitative traits, including disease resistance. RESULTS: Systematic meta-QTL analysis involving 505 QTLs from 101 linkage-based interval mapping studies was conducted for stripe rust resistance in wheat. For this purpose, publicly available high-quality genetic maps were used to create a consensus linkage map involving 138,574 markers. This map was used to project the QTLs and conduct meta-QTL analysis. A total of 67 important meta-QTLs (MQTLs) were identified which were refined to 29 high-confidence MQTLs. The confidence interval (CI) of MQTLs ranged from 0 to 11.68 cM with a mean of 1.97 cM. The mean physical CI of MQTLs was 24.01 Mb, ranging from 0.0749 to 216.23 Mb per MQTL. As many as 44 MQTLs colocalized with marker-trait associations or SNP peaks associated with stripe rust resistance in wheat. Some MQTLs also included the following major genes- Yr5, Yr7, Yr16, Yr26, Yr30, Yr43, Yr44, Yr64, YrCH52, and YrH52. Candidate gene mining in high-confidence MQTLs identified 1,562 gene models. Examining these gene models for differential expressions yielded 123 differentially expressed genes, including the 59 most promising CGs. We also studied how these genes were expressed in wheat tissues at different phases of development. CONCLUSION: The most promising MQTLs identified in this study may facilitate marker-assisted breeding for stripe rust resistance in wheat. Information on markers flanking the MQTLs can be utilized in genomic selection models to increase the prediction accuracy for stripe rust resistance. The candidate genes identified can also be utilized for enhancing the wheat resistance against stripe rust after in vivo confirmation/validation using one or more of the following methods: gene cloning, reverse genetic methods, and omics approaches.


Subject(s)
Basidiomycota , Triticum , Triticum/genetics , Triticum/microbiology , Bread , Plant Breeding , Quantitative Trait Loci , Chromosome Mapping , Disease Resistance/genetics , Basidiomycota/genetics , Plant Diseases/genetics , Plant Diseases/microbiology
14.
Sci Total Environ ; 884: 163793, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37127166

ABSTRACT

Crop diseases significantly threaten global food security and will worsen with a changing climate. Elemental sulfur nanomaterials (S NMs) were used to suppress bacterial pathogen Pectobacterium carotovorum on lettuce (Lactuca sativa L.). Foliar application with S NMs at 10-100 mg/L statistically decreased the occurrence of bacterial soft rot, where 100 mg/L exhibited the best performance with alleviating disease severity by 94.1 % as relative to infected controls. The disease suppression efficiency of S based materials (100 mg/L) and a conventional pesticide (thiophanate-methyl) followed the order of S NMs ≈ pesticide > S bulk particles (BPs) > sulfate. The disease control efficiency of S NMs was 1.33- and 3.20-fold that of S BPs and sulfate, respectively, and the shoot and root biomass with S NMs was 1.25- and 1.17-fold that of the pesticide treated plants. Mechanistically, S NMs (1) triggered jasmonic acid (JA) and salicylic acid (SA) mediated systematic induced resistance and systemic acquired resistance, thereby upregulating pathogenesis-related gene expression (enhanced by 29.3-259.7 %); (2) enhanced antioxidative enzyme activity and antioxidative gene expression (improved by 67.5-326.6 %), thereby alleviating the oxidative stress; and (3) exhibited direct in vivo antibacterial activity. Metabolomics analysis demonstrated that S NMs also promoted the tricarboxylic acid cycle and increased SA and JA metabolite biosynthesis. Moreover, S NMs application increased nutritive quality of lettuce by 20.8-191.7 %. These findings demonstrate that S NMs have potential to manage crop disease, thereby reducing the environmental burden due to decreasing use of conventional pesticides.


Subject(s)
Nanostructures , Pesticides , Lactuca/metabolism , Salicylic Acid , Antioxidants/metabolism , Pesticides/metabolism , Sulfur/metabolism , Sulfates/metabolism
15.
J Hazard Mater ; 454: 131418, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37104951

ABSTRACT

Chromium (VI) is one of the hazardous heavy metal, heavily discharged into the soil and severely hampers the plants yield. The TiO2 NPs was selected due to its potential to alleviate the heavy metals toxicity. This manuscript unravels the mechanisms for Cr(VI) induced toxicity and how foliar application of TiO2 NPS potentially ameliorate the toxicity by regulating the photosynthetic attributes, DNA damage, antioxidants defense machinery, and phytochelatins synthesis in Helianthus annuus L. Plants were exposed to Cr(VI) concentrations [0, 15, 30, and 60 mg Cr(VI) kg-1 of soil], and TiO2 NPS (15 mg L-1, 25 nm size) were foliar sprayed thrice to the plants at three days interval. The maximum accumulation of total chromium was recorded in root (12.53 µg g-1 DW) followed by shoot (5.67 µg g-1 DW) at 60 mg Cr(VI) treatment. The presence and localization of TiO2 NPs inside the plant leaf cells were confirmed by TEM-EDS analysis. The results revealed that Cr(VI) exposure had a dose-dependent inhibitory effects on photosynthetic attributes, structure of guard and epidermal cells, photosynthetic pigments; inducing impacts on H2O2 and MDA productions, DNA damage, AsA-GSH cycle, and most importantly on PC2, and PC3 synthesis which is rarely reported. However, TiO2 NPs exposure minimized Cr(VI) induced toxicity through reduction of total chromium accumulation, H2O2 and MDA productions, thereby reducing DNA damage reported first time under combined treatment of Cr(VI)+ TiO2 NPs as evidenced through comet assay. It also positively regulate the photosynthetic pigments, AsA-GSH cycle, and modulates PC2 and PC3 synthesis which have crucial impacts on ROS quenching and Cr(VI) detoxification, respectively, and in turn, minimizes Cr(VI) toxicity in H. annuus L. Besides, this study strengthens the less acknowledged report that Cr(VI) is an inducer of PCs synthesis and also confirms that TiO2 NPs potentially counteract Cr(VI) toxicity.


Subject(s)
Helianthus , Nanoparticles , Antioxidants/pharmacology , Phytochelatins , Hydrogen Peroxide , Chromium/toxicity , DNA Damage , Soil
16.
Physiol Plant ; 175(2): e13881, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36840678

ABSTRACT

The significance of priming in enhancing abiotic stress tolerance is well-established in several important crops. Priming positively impacts plant growth and improves stress tolerance at multiple developmental stages, and seed priming is one of the most used methods. Seed priming influences the pre-germinative metabolism that ensures proper germination, early seedling establishment, enhanced stress tolerance and yield, even under unfavourable environmental conditions. Seed priming involves pre-exposure of seeds to mild stress, and this pre-treatment induces specific changes at the physiological and molecular levels. Interestingly, priming can improve the efficiency of the DNA repair mechanism, along with activation of specific signalling proteins and transcription factors for rapid and efficient stress tolerance. Notably, such acquired stress tolerance may be retained for longer duration, namely, later developmental stages or even subsequent generations. Epigenetic and chromatin-based mechanisms such as DNA methylation, histone modifications, and nucleosome positioning are some of the key molecular changes involved in priming/stress memory. Further, the retention of induced epigenetic changes may influence the priming-induced trans-generational stress memory. This review discusses known and plausible seed priming-induced molecular mechanisms that govern germination and stress memory within and across generations, highlighting their role in regulating the plant response to abiotic stresses. Understanding the molecular mechanism for activation of stress-responsive genes and the epigenetic changes resulting from seed priming will help to improve the resiliency of the crops for enhanced productivity under extreme environments.


Subject(s)
Germination , Seedlings , Germination/physiology , Stress, Physiological , Seeds , Epigenesis, Genetic , Crops, Agricultural/genetics
17.
J Hazard Mater ; 443(Pt B): 130283, 2023 02 05.
Article in English | MEDLINE | ID: mdl-36370480

ABSTRACT

Metal(loid)s contamination poses a serious threat to ecosystem biosafety and human health. Phytoremediation is a cost-effective and eco-friendly technology with good public acceptance, although the process does require a significant amount of time for success. To enhance the phytoremediation efficiency, numerous approaches have been explored, including soil amendments application with chelators to facilitate remediation. Sulfur (S), a macronutrient for plant growth, plays vital roles in several metabolic pathways that can actively affect metal(loid)s phytoextraction, as well as attenuate metal(loid) toxicity. In this review, different forms of S-amendments (fertilizers) on uptake and translocation in plants upon exposure to various metal(loid) are evaluated. Possible mechanisms for S application alleviating metal(loid) toxicity are documented at the physiological, biochemical and molecular levels. Furthermore, this review highlights the crosstalk between S-assimilation and other biomolecules, such as phytohormones, polyamines and nitric oxide, which are also important for metal(loid) stress tolerance. Given the effectiveness and potential of S amendments on phytoremediation, future studies should focus on optimizing phytoremediation efficiency in long-term field studies and on investigating the appropriate S dose to maximize the food safety and ecosystem health.


Subject(s)
Metals, Heavy , Soil Pollutants , Humans , Biodegradation, Environmental , Soil Pollutants/analysis , Metals, Heavy/analysis , Biofortification , Ecosystem , Plants/metabolism , Sulfur
18.
Int J Phytoremediation ; 25(2): 187-206, 2023.
Article in English | MEDLINE | ID: mdl-35549957

ABSTRACT

Unexpected bioaccumulation and biomagnification of heavy metal(loid)s (HMs) in the environment have become a predicament for all living organisms, including plants. The presence of these HMs in the plant system raised the level of reactive oxygen species (ROS) and remodeled several vital cellular biomolecules. These lead to several morphological, physiological, metabolic, and molecular aberrations in plants ranging from chlorosis of leaves to the lipid peroxidation of membranes, and degradation of proteins and nucleic acid including the modulation of the enzymatic system, which ultimately affects the plant growth and productivity. Plants are equipped with several mechanisms to counteract the HMs toxicity. Among them, seed priming (SP) technology has been widely tested with the use of several inorganic chemicals, plant growth regulators (PGRs), gasotransmitters, nanoparticles, living organisms, and plant leaf extracts. The use of these compounds has the potential to alleviate the HMs toxicity through the strengthening of the antioxidant defense system, generation of low molecular weight metallothionein's (MTs), and phytochelatins (PCs), and improving seedling vigor during early growth stages. This review presents an account of the sources, uptake and transport, and phytotoxic effects of HMs with special attention to different mechanism/s, occurring to mitigate the HMs toxicity in plants employing SP technology.Novelty statement: To the best of our knowledge, this review has delineated the consequences of HMs on the crucial plant processes, which ultimately affect plant growth and development. This review also compiled the up to dated information on phytotoxicity of HMs through the use of SP technology, this review discussed how different types of SP approaches help in diminishing the concentration HMs in plant systems. Also, we depicted mechanisms, represent how HMs transport and their actions on cellular levels, and emphasized, how diverse SP technology effectiveness in the mitigation of plants' phytotoxicity in unique ways.


Subject(s)
Metals, Heavy , Biodegradation, Environmental , Metals, Heavy/toxicity , Metals, Heavy/analysis , Seeds/chemistry , Seeds/metabolism , Crops, Agricultural/metabolism , Reactive Oxygen Species/metabolism
19.
J Environ Sci (China) ; 124: 319-329, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36182142

ABSTRACT

Experiments were performed to explore the impact of sulfur nanoparticles (SNPs) on growth, Cu accumulation, and physiological and biochemical responses of oilseed rape (Brassica napus L.) inoculated with 5 mg/L Cu-amended MS medium supplemented with or without 300 mg/L SNPs exposure. Cu exerted severe phytotoxicity and inhibited plant growth. SNPs application enhanced the shoot height, root length, and dry weight of shoot and root by 34.6%, 282%, 41.7% and 37.1%, respectively, over Cu treatment alone, while the shoot and root Cu contents and Cu-induced lipid perodixation as the malondialdehyde (MDA) levels in shoots and roots were decreased by 37.6%, 35%, 28.4% and 26.8%. Further, the increases in superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR) and glutathione S-transferase (GST) enzyme activities caused by Cu stress were mitigated in shoots (10.9%-37.1%) and roots (14.6%-35.3%) with SNPs addition. SNPs also positively counteracted the negative effects on shoot K, Ca, P, Mg, Mn, Zn and Fe contents and root K, Ca, Mg and Mn contents from Cu exposure alone, and significantly promoted the nutrients accumulation in plant. Additionally, in comparison with common bulk sulfur particles (BSPs) and sulfate, SNPs showed more positive effects on promoting growth in shoots (6.7% and 19.5%) and roots (10.9% and 15.1%), as well as lowering the shoot Cu content (40.1% and 43.3%) under Cu stress. Thus, SNPs application has potential to be a green and sustainable technology for increasing plant productivity and reducing accumulation of toxic metals in heavy metal polluted soils.


Subject(s)
Brassica napus , Metals, Heavy , Nanoparticles , Antioxidants/metabolism , Ascorbate Peroxidases/metabolism , Brassica napus/metabolism , Catalase/metabolism , Glutathione Reductase/metabolism , Glutathione Reductase/pharmacology , Glutathione Transferase , Hydrogen Peroxide , Lipids/pharmacology , Malondialdehyde , Metals, Heavy/pharmacology , Oxidative Stress , Peroxidases , Plant Roots/metabolism , Soil , Sulfates , Sulfur , Superoxide Dismutase/metabolism
20.
Front Plant Sci ; 13: 1067063, 2022.
Article in English | MEDLINE | ID: mdl-36483946

ABSTRACT

In wheat, lodging is affected by anatomical and chemical characteristics of the stem cell wall. Plant characteristics determining the stem strength were measured in lodging tolerant mutant (PMW-2016-1) developed through mutation breeding utilizing hexaploid wheat cultivar, DPW-621-50. Various anatomical features, chemical composition, and mechanical strength of the culms of newly developed lodging-tolerant mutant (PMW-2016-1) and parent (DPW-621-50), were examined by light microscopy, the Klason method, prostate tester coupled with a Universal Tensile Machine, and Fourier Transform Infrared Spectroscopy. Significant changes in the anatomical features, including the outer radius of the stem, stem wall thickness, and the proportions of various tissues, and vascular bundles were noticed. Chemical analysis revealed that the lignin level in the PMW-2016-1 mutant was higher and exhibited superiority in stem strength compared to the DPW-621-50 parent line. The force (N) required to break the internodes of mutant PMW-2016-1 was higher than that of DPW-621-50. The results suggested that the outer stem radius, stem wall thickness, the proportion of sclerenchyma tissues, the number of large vascular bundles, and lignin content are important factors that affect the mechanical strength of wheat stems, which can be the key parameters for the selection of varieties having higher lodging tolerance. Preliminary studies on the newly identified mutant PMW-2016-1 suggested that this mutant may possess higher lodging tolerance because it has a higher stem strength than DPW-621-50 and can be used as a donor parent for the development of lodging-tolerant wheat varieties.

SELECTION OF CITATIONS
SEARCH DETAIL
...